Finding community base on web graph clustering
نویسنده
چکیده
Search Pointers organize the main part of the application on the Internet. However, because of Information management hardware, high volume of data and word similarities in different fields the most answers to the user s’ questions aren`t correct. So the web graph clustering and cluster placement in corresponding answers helps user to achieve his or her intended results. Community (web communities) can be used to generate automated directory services. In this paper the act of clustering has been done by finding the complete bipartite subgraphs. The subgraphs form the core of a community or clustering and by extending the core we can attain to the whole clustering .The whole set of graphs in England are 18 million pages and 300 million links. Keyword: Web, Clustering, Community, Graph, fuzzy. © 2013 IAUCTB-IJSEE Science. All rights reserved
منابع مشابه
Finding Community Base on Web Graph Clustering
Search Pointers organize the main part of the application on the Internet. However, because of Information management hardware, high volume of data and word similarities in different fields the most answers to the user s’ questions aren`t correct. So the web graph clustering and cluster placement in corresponding answers helps user to achieve his or her intended results. Community (web communit...
متن کاملSampling from social networks’s graph based on topological properties and bee colony algorithm
In recent years, the sampling problem in massive graphs of social networks has attracted much attention for fast analyzing a small and good sample instead of a huge network. Many algorithms have been proposed for sampling of social network’ graph. The purpose of these algorithms is to create a sample that is approximately similar to the original network’s graph in terms of properties such as de...
متن کاملAn Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملCommunity Detection on Evolving Graphs
Clustering is a fundamental step in many information-retrieval and data-mining applications. Detecting clusters in graphs is also a key tool for finding the community structure in social and behavioral networks. In many of these applications, the input graph evolves over time in a continual and decentralized manner, and, to maintain a good clustering, the clustering algorithm needs to repeatedl...
متن کاملEnhancing Concept Based Modeling Approach for Blog Classification
Blogs are user generated content discusses on various topics. For the past 10 years, the social web content is growing in a fast pace and research projects are finding ways to channelize these information using text classification techniques. Existing classification technique follows only boolean (or crisp) logic. This paper extends our previous work with a framework where fuzzy clustering is o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014